91麻豆精品91久久久久久清纯_亚洲色图欧美另类_男女高潮又爽又黄又无遮挡_性做爰A片春欲

QUANTUM量子科學(xué)儀器貿(mào)易(北京)有限公司
contact
17180192385 虛擬號(hào)將在180秒后失效,請(qǐng)?jiān)谟行趦?nèi)撥打
若未完成電話(huà)咨詢(xún),您可提交留言咨詢(xún),廠(chǎng)商主動(dòng)聯(lián)系您

點(diǎn)擊提交代表您同意《用戶(hù)服務(wù)協(xié)議》《隱私政策》

您好,歡迎訪(fǎng)問(wèn)分析測(cè)試百科網(wǎng)!

QUANTUM量子科學(xué)儀器貿(mào)易(北京)有限公司

白銀會(huì)員
儀器廠(chǎng)商
400-6699-117轉(zhuǎn)1000
分析測(cè)試百科網(wǎng)認(rèn)證會(huì)員,請(qǐng)放心撥打!
當(dāng)前位置: Quantum Design中國(guó)子公司 切片機(jī) 原位細(xì)胞3D切割成像平臺(tái)
原位細(xì)胞3D切割成像平臺(tái)
原位細(xì)胞3D切割成像平臺(tái)
  • 原位細(xì)胞3D切割成像平臺(tái)
< >

原位細(xì)胞3D切割成像平臺(tái)

參考報(bào)價(jià):面議 品牌:LLS ROWIAK LaserLabSolutions GmbH 產(chǎn)地:德國(guó) 型號(hào):CellSurgeon 樣本:來(lái)電或留言獲取樣本
AI問(wèn)答
  • 原位細(xì)胞3D切割成像平臺(tái)價(jià)格? 可以檢測(cè)什么?
  • 原位細(xì)胞3D切割成像平臺(tái)參數(shù)規(guī)格? 配套的耗材試劑?
  • 原位細(xì)胞3D切割成像平臺(tái)操作規(guī)程? 使用注意事項(xiàng)?
參數(shù)規(guī)格
產(chǎn)地類(lèi)別:進(jìn)口 供應(yīng)商性質(zhì):總代理
產(chǎn)品介紹

原位細(xì)胞3D切割成像平臺(tái)-CellSurgeon


1613972069282774.png


德國(guó)LLS ROWIAK公司推出的CellSurgeon是一款、非接觸的3D納米激光活細(xì)胞顯微成像切割系統(tǒng)。它獨(dú)具特色的多光子切割技術(shù),能夠從細(xì)胞內(nèi)或組織內(nèi)的任意點(diǎn)開(kāi)始切割,實(shí)現(xiàn)真正意義上的定點(diǎn)操作。并且CellSurgeon還配有MPM成像模塊,能夠?qū)崿F(xiàn)實(shí)時(shí)的熒光標(biāo)記或無(wú)標(biāo)記成像,定位所需操作的部位和實(shí)時(shí)觀(guān)測(cè)細(xì)胞動(dòng)態(tài)變化。通過(guò)CellSurgeon研究者能夠進(jìn)行實(shí)時(shí)的活細(xì)胞、組織操作和觀(guān)測(cè),幫助研究者更好的研究原位細(xì)胞的生理活性。



應(yīng)用領(lǐng)域

■  染色體切割

■  亞細(xì)胞器的實(shí)時(shí)觀(guān)測(cè)切割

■  原位組織的單細(xì)胞分離

■  薄組織的顯微切割

■  基于激光的光轉(zhuǎn)染技術(shù)


CellSurgeon切割原理


CellSurgeon將近紅外超短脈沖激光器耦合到顯微鏡中,并利用高數(shù)值孔徑物鏡聚焦超短激光脈沖,僅在最小的聚焦體積內(nèi)產(chǎn)生高強(qiáng)度能量引起多光子吸收,然后以非常精確的方式在活細(xì)胞中實(shí)現(xiàn)亞細(xì)胞水平的細(xì)胞結(jié)構(gòu)可視化操作。由于幾乎沒(méi)有熱能或機(jī)械能傳遞,靠近激光束緊焦點(diǎn)的細(xì)胞結(jié)構(gòu)依舊保持完好無(wú)損。




CellSurgeon的切割方式


雙光子切割 VS 單光子切割

可從組織中的任意部位開(kāi)始切割


CellSurgeon的切割方式


為何選用CellSurgeon?

     ■  多光子實(shí)時(shí)成像追蹤

     ■  的3D切割

     ■  無(wú)需前處理即可直接切割

     ■  直接的原位切割

     ■  活細(xì)胞或組織均可直接切割

     ■  大限度保存生物信息的完整

     ■  能夠兼容多種型號(hào)的顯微鏡


基本參數(shù)


■  激光:飛秒近紅外激光,單波長(zhǎng)或可變

■  掃描器:雙獨(dú)立掃描鏡

■  掃描精度:700 X 700 ~ 300 X 100

■  最大分辨率:700 X 700(1,43 f/s)

■  最大掃描速度:300 X 100(10 f/s)

■  切割模式:不同波長(zhǎng)的2D或3D精準(zhǔn)手動(dòng)或自動(dòng)切割

■  控制器:驅(qū)動(dòng)所有機(jī)動(dòng)單元:顯微鏡、掃描器、 z驅(qū)動(dòng)器、掃描臺(tái)以及所有相關(guān)配件




數(shù)據(jù)測(cè)試

■  動(dòng)脈激光切割和成像

30 fps超短激光脈沖對(duì)小鼠血管的損傷


體內(nèi)激光誘導(dǎo)血栓的三維重建,采用FITC-葡聚糖染色雙光子成像監(jiān)測(cè)激光損傷后血栓的形成情況


■  肌動(dòng)蛋白絲的切割

用飛秒激光切割肌動(dòng)蛋白細(xì)絲


■  有絲分裂紡錘體的亞細(xì)胞解剖

GBP標(biāo)記的有絲分裂紡錘體,光漂白(A)和切割消融(B)


■  細(xì)胞器消融

不同功率激光對(duì)核的消融,激光消融前(A)和后(B)


線(xiàn)粒體消融,激光消融前()和后()


■  從細(xì)胞到組織的動(dòng)態(tài)觀(guān)測(cè)與切割


CellSurgeon能夠勝任各種類(lèi)型的切割任務(wù),無(wú)論是的染色質(zhì)還是活體組織,它都能很好地勝任。

該設(shè)備可以兼容多種型號(hào)的顯微鏡,并且支持顯微操作針等配件,能夠在切割后實(shí)現(xiàn)對(duì)切割部分的轉(zhuǎn)移。


從細(xì)胞團(tuán)中切除的細(xì)胞并用微毛細(xì)管將提取細(xì)胞切出


固定的CHO的Alexa488標(biāo)記的毒傘素切割


 

活U2OS細(xì)胞的FP635標(biāo)記的肌動(dòng)蛋白的切割


活GM-7373牛主動(dòng)脈內(nèi)皮細(xì)胞的

MitoTracker Orange ?的單線(xiàn)粒體消融實(shí)驗(yàn)

 

 

活GM-7373牛主動(dòng)脈內(nèi)皮細(xì)胞誘導(dǎo)凋亡實(shí)驗(yàn)




人發(fā)絲切割


 染色質(zhì)切割


激光介導(dǎo)的細(xì)胞轉(zhuǎn)染



白蟻的組織切割


小鼠活體血管切割


 ■  基于激光的原位細(xì)胞轉(zhuǎn)染

 

無(wú)論是電轉(zhuǎn)還是脂質(zhì)體都需要先將細(xì)胞懸浮才能夠進(jìn)行入轉(zhuǎn)染,但是Cellsurgeon能夠在原位對(duì)細(xì)胞進(jìn)行光穿孔實(shí)現(xiàn)細(xì)胞的轉(zhuǎn)染,這種技術(shù)對(duì)于研究原位的細(xì)胞轉(zhuǎn)染有著重大意義。


使用CellSurgeon對(duì)ZMTH3細(xì)胞進(jìn)行轉(zhuǎn)染pEGFP-C1、pEGFP-HMGA2、pEGFP-HMGB1經(jīng)過(guò)48小時(shí)的圖像

發(fā)表文章

1. Nolte, P.; Brettmacher M.; Gr?ger, C. J.; Gellhaus, T.; Svetlove A.; Schilling, A. F.; Alves, A.; Ru?mann, C.; Dullin, C.; (2023) Spatial correlation of 2D hardtissue histology with 3D microCT scans through 3D printed phantoms Sci Rep 13, 18479 

2.  Kevin Janot, Grégoire Boulouis, Géraud Forestier, Fouzi Bala, Jonathan Cortese, Zoltán Szatmáry, Sylvia M. Bardet, Maxime Baudouin, Marie-Laure Perrin, Jérémy Mounier, Claude Couquet, Catherine Yardin, Guillaume Segonds, Nicolas Dubois, Alexandra Martinez, Pierre-Louis Lesage, Yong-Hong Ding, Ramanathan Kadirvel , Daying Dai, Charbel Mounayer, Faraj Terro, Aymeric Rouchaud. (2023) WEB shape modifications: “angiography–histopathology correlations in rabbits” J NeuroIntervent Surg 2023;0:1–7. 

3. Géraud FORESTIER, Jonathan CORTESE, Sylvia M. BARDET, Maxime BAUDOUIN, Kévin JANOT, Voahirana RATSIMBAZAFY, Marie-Laure PERRIN, Jérémy MOUNIER, Claude COUQUET, Catherine YARDIN, Yan LARRAGNEGUY, Flavie SOUHAUT, Romain CHAUVET, Alexis BELGACEM, Sonia BRISCHOUX, Julien MAGNE, Charbel MOUNAYER, Faraj TERRO, Aymeric ROUCHAUD. (2023) “Comparison of Arterial Wall Integration of different Flow Diverters in rabbits” the CICAFLOW study Journal of Neuroradiology, In press. 

4. Donath, S?ren, Leon Angerstein, Lara Gentemann, Dominik Müller, Anna E. Seidler, Christian Jesinghaus, André Bleich, Alexander Heisterkamp, Manuela Buettner, and Stefan Kalies. (2022). “Investigation of Colonic Regeneration via Precise Damage Application Using Femtosecond Laser-Based Nanosurgery” Cells 11, no. 7: 1143. https://doi.org/10.3390/cells11071143 

5. Müller, Dominik, S?ren Donath, Emanuel G. Brückner, Santoshi Biswanath Devadas, Fiene Daniel, Lara Gentemann, Robert Zweigerdt, Alexander Heisterkamp, and Stefan M.K. Kalies. (2021). “How Localized Z-Disc Damage Affects Force Generation and Gene Expression in Cardiomyocytes” Bioengineering 8, no. 12: 213. https://doi.org/10.3390/bioengineering8120213 

6. Müller D, Klamt T, Gentemann L, Heisterkamp A, Kalies SMK (2021) Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes. PLoS ONE 16(6): e0252346. https://doi.org/10.1371/journal.pone.0252346

7. Bouyer M; Garot C; Machillot P; Vollaire J; Fitzpatrick V; Morand S; Boutonnat J; Josserand V; Bettega G; Picart C (2021) 3D-printed scaffold combined to 2D osteoinductive coatings to repair a critical-size mandibular bone defect Materials Today Bio 11 100113 

8. Verhaegen C, Kautbally S, Zapareto D C, Brusa D, Courtoy G, Aydin S, Bouzin C, Oury C, Bertrand L, Jacques P J, Beauloye C, Horman S, Kefer J (2020) Early thrombogenicity of coronary stents: comparison of bioresorbable polymer sirolimus-eluting and bare metal stents in an aortic rat model. Am J Cardiovasc Dis. 10(2):72-83 

9. Zeller-Plumhoff B, Malicha C, Krüger D, Campbella G, Wiesea B, Galli S, Wennerberg A, Willumeit-R?mer R, Wieland F (2020) Analysis of the bone ultrastructure around biodegradable Mg–x Gd implants using small angle X-ray scattering and X-ray diffraction Acta Biomaterialia 101 637–645

10. Rousselle S D , Wicks J R, Tabb B C, Tellez A, O’Brien M (2019) Histology Strategies for Medical Implants and Interventional Device Studies Toxicologic Pathology Vol. 47(3) 235-249 

11. Neuerburg C, Mittlmeier L M, Keppler A M, Westphal I, Glass ?, Saller M M, Herlyn P K E, Richter H, B?cker W, Schieker M, Aszodi A, Fischer D C (2019) Growth factor-mediated augmentation of long bones: evaluation of a BMP-7 loaded thermoresponsive hydrogel in a murine femoral intramedullary injection model. Journal of Orthopaedic Surgery and Research 14 297 

12. Kunert-Keil C, Richter H, Zeidler-Rentzsch I, Bleeker I, Gredes T (2019) Histological comparison between laser microtome sections and ground specimens of implant-containing tissues. Annals of Anatomy 222 153–157 

13. Gabler C, Sa? JO, Gierschner S, Lindner T, Bader R, Tischer T (2018) In Vivo Evaluation of Different Collagen Scaffolds in an Achilles Tendon Defect Model. BioMed Research International 208

14.    Wolkers W, Vásquez-Rivera A, Oldenhof H, Dipresa D, Goecke T, Kouvaka  A, Will F, Haverich A, Korossis S, Hilfiker A (2018) Use of sucrose to diminish pore formation in freeze-dried heart valves. Scientific Reports 8 12982 

15. Albers J, Markus MA, Alves F, Dullin C (2018) X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Scientific Reports 8(1) 7712

16. Boyde A (2018) Evaluation of laser ablation microtomy for correlative microscopy of hard tissues. Journal of Microscopy 271(8) 1-14

17.    Pobloth AM, Checa S, Razi H, Petersen A, Weaver JC, Schmidt-Bleek K, Windolf M, Tatai Aá, Roth CP, Schaser KD, Duda GN, Schwabe P (2018) Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Science Translational Medicine 10 423

18. Joner M, Nicol P, Rai H, Richter H, Foin N, Ng J, Cuesta J, Rivero F, Serrano R, Alfonso F (2018) Very Late Scaffold Thrombosis: Insights from Optical Coherence Tomography and Histopathology. EuroIntervention 13(18)

19. Boyde A, Staines KA, Javaheri B, Millan JL, Pitsillides AA, Farquharson C (2017) A distinctive patchy osteomalacia characterises Phospho1 deficient mice. Journal of Anatomy 231 298-308

20. Kowtharapu BS, Marfurt C, Hovakimyan M, Will F, Richter H, Wree A, Stachs O, Guthoff RF (2017) Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation. Journal of Microscopy 265(1) 21–26

21. Will F, Richter H (2015) Laser-based Preparation of Biological Tissue. Laser Technik Journal 12(5) 44-47

22. Richter H, Ratliff J, Will F, Stolze B (2015) Time- and material saving laser microtomy for hard tissue and implants. European Cells and Materials 29 Suppl.2 4

23. Richter H, Ramirez Ojeda DF, Will F (2014) Lasergesteuerte Probenpr?paration von Hartgeweben und Biomaterialien. BIOspektrum 05 14

24. Bourassa D, Gleber S-C, Vogt S, Yi H, Will F,  Richter H, Shin CH, Fahrni CJ (2014) 3D Imaging of Transition Metals in the Zebrafish Embryo by X-ray Fluorescence Microtomography. Metallomics 6 1648-1655

25. Schimek K, Busek M, Brincker S, Groth B, Hoffmann S, Lauster R, Lindner G, Lorenz A, Menzel U, Sonntag F, Walles H, Marx U, Horland R. (2013) Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip 13 3588-3598

26. Richter H, Ratliff J (2012) A Non-Contact Method of Sectioning Cardiovascular Arteries Containing Metallic Stents Using Laser Technology. J Histotechnol 35 (4) 205

27. Richter H, Lubatschowski H, Will F (2011) Laser in Medizin & Biologie: Laser-Mikrotomie mit ultrakurzen Pulsen – Neue Perspektiven für die Gewebe- und Biomaterialbearbeitung. Biophotonik 09 50-52

28. Lubatschowski H, Will F, Przemeck S, Richter H (2011) Laser Microtomy. Handbook of Biophotonics Vol. 2: Photonics for Health Care Wiley-VCH 151-157 

29. Kermani O, Will F, Massow O, Oberheide U, Lubatschowski H (2010) Control of Femtosecond Thin-flap LASIK Using OCT in Human Donor Eyes. Journal of Refractive Surgery 26(1) 57-61

30. Baumgart J, Bintig W, Ngezahayo A, Lubatschowski H, Heisterkamp A (2010) Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection. Optics Express 18 (3) 2219

31. Kermani O, Will F, Massow O, Oberheide U, Lubatschowski H. (2009) Echtzeitsteuerung einer Femtosekundenlaser Sub-Bowman-Keratomileusis an humanen Spenderaugen mittels optischer Koh?renztomographie. Klin Monatsbl Augenheilkd 226 965-969

32. Kütemeyer K, Baumgart J, Lubatschowski L, Heisterkamp A (2009) Repetition rate dependency of low density plasma effects during femtosecond-laser-based surgery of biological tissue. Appl. Phys. B 97(3) 695

33. Baumgart J, Kuetemeyer K, Bintig W, Ngezahayo A, Ertmer W, Lubatschowski H, Heisterkamp A (2009) Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery. J Biomed Opt 14(5) 054040

34. Kermani O, Will F, Lubatschowski H (2008) Real-Time Optical Coherence Tomography-Guided Femtosecond Laser Sub-Bowman Keratomileusis on Human Donor Eyes. Am J Ophthalmol 146 42–45.

35. Kermani O (2008) ?Sehendes Skalpell” schon heute realisierbar. Ophthalmologische Nachrichten 09 (Kongressausgabe)

36. Baumgart J, Bintig W, Ngezahayo A, Willenbrock S, Murua Escobar H, Ertmer W, Lubatschowski H, Heisterkamp A (2008) Quantified femtosecond laser based opto-perforation of living GFSHR-17 and MTH53a cells. Opt. Express 16(5) 3021-3031

37. Baumgart J, Kuetemeyer K, Bintig W, Ngezahayo A, Ertmer W, Lubatschowski H, Heisterkamp A (2008) Investigation of reactive oxygen species in living cells during femtosecond laser based cell surgery. Proc. SPIE Optical Interactions with Tissue and Cells XIX Vol 6854

38. Heisterkamp A, Baumgart J, Maxwell IZ, Ngezahayo A, Mazur E, Lubatschowski H (2007) Fs-Laser Scissors for Photobleaching, Ablation in Fixed Samples and Living Cells, and Studies of Cell Mechanics. Laser Manipulation of Cells and Tissues; Elsevier Inc. 293-307

39. Will F, Block T, Menne P, Lubatschowski H (2007) Laser Microtome: all optical preparation of thin tissue samples. Proceedings of SPIE 6460 646007-1

40. Lubatschowski H (2007) Laser Microtomy – Opening a new Feasibility for Tissue Preparation. Optic & Photonic WILEY-VCH 49 – 51

41. Menne P (2007) Microtomy with Femtosecond Lasers. Biophotonics International; Laurin Publishing Co. Inc. May 2007 35 – 37

 




用戶(hù)單位

部分用戶(hù)單位:

Bayer HealthCare, Cardiovascular Research


Leibniz University Hannover, Institute of Biophysics

Leibniz University Hannover, Institute for Quantum Optics-1,-2

University of Rostock, Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine

Institute for Bioprocessing and Analytical Measurement Techniques (iba)

mfd Diagnostics GmbH 

14.PNG

原位細(xì)胞3D切割成像平臺(tái) 由QUANTUM量子科學(xué)儀器貿(mào)易(北京)有限公司 為您提供,如您想了解更多關(guān)于原位細(xì)胞3D切割成像平臺(tái) 報(bào)價(jià)、參數(shù)等信息 ,歡迎來(lái)電或留言咨詢(xún)。

注:該產(chǎn)品未在中華人民共和國(guó)食品藥品監(jiān)督管理部門(mén)申請(qǐng)醫(yī)療器械注冊(cè)和備案,不可用于臨床診斷或治療等相關(guān)用途。

QUANTUM量子科學(xué)儀器貿(mào)易(北京)有限公司
91麻豆精品91久久久久久清纯_亚洲色图欧美另类_男女高潮又爽又黄又无遮挡_性做爰A片春欲
jizz日本熟妇| 国产精品毛片无遮挡| 亚洲一区二区三区四区| 国产精品久久一| 成人激情久久| 日本午夜一区二区三区| 国产精品丝袜久久久久久久不卡| jizzjzz日本少妇18中国| 国产精品毛片视频| 国产精品videossex极品| 毛片免费版| 99国产精品99久久久久久| 国产老熟女一区二区| 国产亚洲综合一区二区A片吴施蒙| 久久久亚洲熟女| 欧美精品一区二区三区人妻一区| 国产人妻14p| 亚洲狠狠久久综合一区77777| 精品国产18久久久久久怡红| 国产又粗又爽又黄的视频| 国产aⅴ一区二区三区| 久久人国产亚洲欧美精品成人| 国产精品久久久久久久久久久不卡 | 国产乱妇高清无乱码免费| 无码国产色欲XXXX视频| 日日天干夜夜狠狠爱| 丰满少妇高潮在线观看| 三年片免费观看大全国语| 乱色熟女综合一区二区三区| 《桌球上的艳遇》2| 亚洲精品午夜| 69精品丰满人妻无码视频A片| 成熟人妻换╳╳╳╳Ⅹ| 人妻精品久久| 色翁荡息又大又硬又粗肖艳| 亚洲AV成人片无码网站| 国内自拍偷第55页| 久久精品一区二区三区四区 | 17岁日本高清免费观看完整版| 免费观看大肉大捧一进一出视频| 玩弄丰满熟妇留守妇女|